
 

Dynamic Jumps of an Agile Bicycle through 
Reinforcement Learning 

Zhuochen Yuan  
Tsinghua Shenzhen International 

Graduate School  
Tsinghua University 

Shenzhen, China 
yuanzc22@mails.tsinghua.edu.cn 

Linqi Ye  
School of Future Technology  

Shanghai University 

Shanghai, China 
yelinqi@shu.edu.cn 

Houde Liu  
Tsinghua Shenzhen International 

Graduate School  
Tsinghua University 

Shenzhen, China 
liu.hd@sz.tsinghua.edu.cn 

Zhang Chen 
Department of Automation  

Tsinghua University  

Beijing, China 
cz_da@tsinghua.edu.cn 

Bin Liang 
Department of Automation  

Tsinghua University  

Beijing, China 
bliang@tsinghua.edu.cn 

 

 

Abstract—Controlling bicycles during dynamic maneuvers, 

such as jumps, poses significant challenges due to the intricate 

demands of balance and stability. This study utilizes the 

Proximal Policy Optimization (PPO) algorithm to control both 

ground navigation and dynamic jumps. Stability on flat terrain 

is maintained through steering adjustments, while jumps are 

facilitated by vertical thrust. The proposed approach is 

validated through simulation, showing high success rates in 

jump execution, along with improved balance and adaptability. 

These results underscore the potential of reinforcement 

learning-based control systems in managing complex dynamic 

movements and contribute to the development of more robust 

motion control strategies for bicycles on both structured and 

unstructured terrains. The attached video is given in 

https://linqi-ye.github.io/video/flybike.mp4. 

Keywords—Bicycle jumping, reinforcement learning, motion 

control, Proximal Policy Optimization 

I. INTRODUCTION 

Bicycles, as a common form of transportation, are 
characterized by agile motion, precise control, and short 
response times [1]. However, the demands of complex 
operating environments and the need for dynamic stability 
[3][4] suggest further exploration is required in controlling 
bicycle motion, particularly jumping maneuvers, which are 
key to agile bicycle handling. Traditional approaches to 
bicycle control rely on dynamic models and control theories 
[2][5][6][7][9][10], but these methods often perform well only 
in simulation or controlled settings and are generally limited 
to tasks like steering and path tracking. Consequently, they 
struggle with uncertainties and variability introduced by 
environmental factors in dynamic jumping scenarios and lack 
the adaptability required for unstructured environments 
[8][11]. 

Reinforcement learning (RL) methods have increasingly 
gained attention as alternatives to conventional control 
systems due to their demonstrated stability in both structured 
and unstructured environments [13][15]. RL is based on the 
principle of training an agent to learn optimal actions by 
observing a dynamic environment and receiving rewards from 
interactions with the system, equipping the agent with 
generalizability across complex tasks and disturbances 

[12][14][17]. Randløv and Alstrøm [14] divided a cycling task 
into two components: maintaining balance and reaching a 
target, using RL to improve the learning efficiency of complex 
control tasks. Jie Tan [8] modeled bicycles and riders as 
articulated rigid-body systems and applied the policy gradient 
method [15] offline to teach optimal riding policies, achieving 
highly maneuverable control. Tuyen [16] utilized the deep 
deterministic policy gradient (DDPG) [17] algorithm to 
control bicycle balance and steering, demonstrating DDPG’s 
effectiveness in continuous control tasks. However, most of 
these studies only focused on balance control and trajectory 
tracking, with limited attention to dynamic jumping tasks. 
Zheng [18] applied a continuous-action RL method combined 
with the DDPG algorithm to train bicycles for ramp jumping, 
but this approach relied heavily on inertia and did not explore 
the role of the rider in the jumping process. 

Recently, Boston Dynamics presents its design of a 
jumping bicycle as shown in Fig. 1. The bicycle has attached 
a 2-link structure on its frame to provide thrust and can jump 
to a significant height (tethered). 

 

Fig. 1. The jumping bicycle from Boston Dynamics. 

Inspired by Boston Dynamics’ work, we present a novel 
agile bicycle system as shown in Fig. 2, which is a rigid-body 
system consisting of a bicycle and a rider, and use 
reinforcement learning to train dynamic jumping motion 
based on this system model. The rider, represented as a 
movable mass block, contributes to the platform jump through 
traction motion. Compared to single bicycle motion, the 
addition of the mass-block structure and the rapid vertical 



changes during jumping introduce new challenges for system 
balance. The main contributions of this paper are as follows: 

 

Fig. 2. The proposed agile bicycle as the research subject which consists of 
the bicycle body and the rider (mass-block structure).  

• We propose a bicycle model for the dynamic jumping 
that incorporates a mass-block structure, enabling 
significant changes in vertical velocity through 
traction motion. 

• We place additional emphasis on the bicycle's vertical 
velocity during training, alongside a reward term for 
maintaining balance, and apply Proximal Policy 
Optimization (PPO) [19] for reinforcement learning. 

• The effectiveness and stability of the method are 
validated through step-jumping tests in a simulated 
environment, demonstrating the applicability of the 
reinforcement learning approach in dynamic settings 
requiring fast and accurate responses. This research 
lays the foundation for future studies on applying deep 
reinforcement learning to more complex motion 
control systems. 

II. METHODS 

In this work, we apply the PPO algorithm to train the 
control policy for the system, see Fig. 3. The reinforcement 
learning framework is modeled as a Markov Decision Process 
(MDP), defined by the tuple ��, �, �� , ��� [18], where: 

• � represents the set of all possible states, 

• � represents the action space, 

• ��	
��|	
 , �
� is the state transition function, 

• ��	
��|	
 , �
� is the immediate reward function. 

 

Fig. 3. Diagram of Reinforcement Learning Method. 

At each time step �, the agent selects an action �
 from the 
policy based on the current state 	
. The MDP then computes 
the next state 	
�� and the corresponding reward �
, providing 
feedback to the agent. The objective is to learn a policy 
���
|	
� that maximizes the cumulative discounted rewards 
over time, which is calculated as: 

 ���� � ���∑ �
�

�

�� � (1) 

where � is the discount factor, determining how much future 
rewards are valued.  

Policy Network: To train the policy π��
|	
�, we use an 
actor-critic architecture with the Proximal Policy 
Optimization algorithm (PPO) optimizing the policy. PPO is 
well-suited for continuous control tasks like hopping, as it 
maintains a balance between exploration and exploitation 
while ensuring stable and efficient learning. The actor network 
outputs the control action, while the critic network estimates 
the value function of each state, helping the agent evaluate the 
quality of its actions. 

State Space: The state space consists exclusively of 
proprioceptive information related to the bicycle's state. This 
includes joint angles �, joint velocities �� , the bicycle's body 
orientation (pitch ��, yaw ��, and roll � ), and the linear and 
angular velocities !, "  of the body. This rich set of 
proprioceptive data enables the agent to effectively perceive 
the bicycle’s posture and dynamics, making informed 
decisions to maintain stability and control. However, it does 
not include any external environmental data such as terrain 
features or obstacles, making the model entirely reliant on 
internal feedback for decision making. 

Action Space: The action space is continuous, controlling 
various parameters such as the position of mass-block 
structure, which determines the jumping velocity, and the 
steering angle, which adjust the orientation and stability of the 
bicycle, and the velocity of the back wheel, which determines 
the forward speed of the bicycle. These actions provide 
smooth control over the bicycle's motion, enabling it to adapt 
its internal configuration to maintain balance and achieve 
agile and robust jumping. 

Reward Function: The reward function �
#
�$  is designed 
to incentivize stability, minimize energy consumption, and 
encourage forward progression. It consists of several 
components: 

• Live Reward: A constant reward �$%&' � 1 is provided 
at each time step, which is needed for keeping the 
agent learning continuously. 

• Orientation Reward: The orientation reward penalizes 
the bicycle for deviating from a stable posture, which 
is based on the body’s pitch �� and roll � : 

 �#)%� � *#)%� + ,-.�|��|, |360° 3 ��|� �2.1� 

 �#)% � *#)%7 + ,-.�|� |, |360° 3 � |� �2.2� 

 where *#)%� and *#)%7 correspond to the weights of 
the two part rewards. In this case, both are set to 30.05 
in our work. 

• Velocity Reward: The velocity reward measures the 
change in the vertical direction of the smart body and 
increases if the speed is greater, which ensures that the 
bicycle can take off with sufficient speed. It is 
calculated as follows: 



 �&'$ � *9 + :!�: �3� 

 where !� is the vertical velocity of the bicycle’s body 

and *9 is the weight of the velocity reward which is 

set to 1 here. 

Overall, the comprehensive reward function ensures that 
the bicycle learns to maintain balance, move efficiently, and 
adapt its internal state based on the feedback, which is the sum 
of the components mentioned above: 

 �
#
�$ � �#)%� ; �#)% ; �&'$  �4� 

Policy Optimization Process: PPO optimizes the policy 
by repeatedly interacting with the environment, updating the 
policy network to maximize the expected cumulative reward. 
Furthermore, we set termination conditions to end the learning 
process early in case of extreme situations: If the body’s 
rotation around the Z-axis exceeds 45°, it means that the 
intelligence may have tipped over on its side, and the round 
ends with a large negative bonus: 

 ,-.�|� |, |360° 3 � |� = 45° �5� 

When the termination criteria are met, the episode resets to its 
initial state, and a new training episode begins. 

III. EXPERIMENTS 

A. Simulation Setup 

The PPO-based reinforcement learning approach is 
implemented in Unity 3D using the ML-Agents toolkit. Unity 
3D offers a highly customizable simulation environment that 
enables precise modeling of bicycle dynamics and terrain 
interactions, while the ML-Agents toolkit provides an 
effective framework for training and deploying reinforcement 
learning algorithms in complex 3D environments. 

In our simulation, the bicycle is modeled as a rigid-body 
system, and the rider is represented by a mass-block structure. 
The environment consists of flat terrain for ground navigation 
and obstacles for dynamic jumps. The bicycle is tasked with 
navigating the terrain and performing jumps, while key 
variables such as steering angle, forward angle, vertical 
velocity, and forward velocity are recorded for analysis. 

During the simulation, we first test the bicycle’s dynamic 
jumping ability by leaping onto the step-like terrain. This is 
followed by descending two steps in rapid succession 
immediately after landing, to evaluate the bicycle’s ability to 
regain balance after the aerial phase. Detailed terrain is shown 
in Fig. 4. 

The training process involves continuously updating the 
control strategy as the agent interacts with the environment, 
learning from the feedback provided by the reward function. 
The simulation runs in real time, with each episode ending 
either after a successful dynamic jump or when the bicycle 
becomes unstable and the environment is reset. 

 

Fig. 4. The detailed step-like terrain which is a platform consist of two 
stages. 

B. Simulation Results 

The bicycle is trained for 800?  steps with the PPO 
algorithm. The reward curve is shown in Fig. 5. We then test 
the obtained control policy on the step-like terrain. The results 
can be found in the attached video: https://linqi-
ye.github.io/video/flybike.mp4. The snapshot of the bicycle 
jumping process is shown in Fig. 6. 

 

Fig. 5. The reward curve during training episodes. 

 

Fig. 6. The bicycle jumping snapshots. 

Jumping Height. Fig. 7 illustrates the variation in the 
bicycle's body height as it traverses the designed terrain. The 
bicycle begins in a stable state, ascends to a two-step-high 
platform at the third second, and then continuously descends 
two steps before reaching the ground and stabilizing around 
the eighth second. The figure indicates that the bicycle 
successfully executes stabilization maneuvers, including both 
ascent and descent, demonstrating its ability to adapt to 
altitude changes while maintaining stability. As shown in Fig. 
7, the maximum jumping height of the bicycle during this 
process is 1.13 ,. 

 

Fig. 7. The height trajectory of the bicycle. 

Steering and Forward Angles. The second set of data 
focuses on the steering and forward angles over time, as 
illustrated in Fig. 8. During the jump phase, the steering angle 
oscillated between approximately 340° and 40°, with several 
fluctuations occurring particularly after 4  seconds. This 
indicates that significant adjustments are made to the control 



strategy to maintain balance during the landing and recovery 
phases. Meanwhile, the forward angle varies between 320° 
and 10°, with a notable drop around 4 seconds into the jump. 
These rapid changes indicate that the control strategy adjust 
for the bicycle's forward tilt during the air phase, ensuring a 
smooth landing without excessive forward or backward lean. 

 

Fig. 8. Steering and forward angles over time. 

Vertical and Forward Velocities. The third set of data 
focuses on vertical and forward velocity. As illustrated in Fig. 
9, vertical velocity rises sharply during the jump and then 
drops rapidly. Forward velocity remains around 3 ,/	 
throughout, with a slight decrease during the jump to 
compensate for the change in roll angle. Upon leaving the 
step, each peak in vertical velocity corresponds to the landing 
of either the front or rear wheel. Forward velocity begins to 
increase as the front wheel leaves the platform and returns to 
3,/	 once both wheels have landed. These patterns indicate 
the effectiveness of the control strategy in enabling the bicycle 
to quickly regain balance after landing. 

 

Fig. 9. Vertical and forward velocity over time. 

Analysis Between Angles and Velocities. The final set of 
data displays both steering and forward angles along with the 
corresponding vertical and forward velocities. The vertical 
velocity exhibits a sharp drop, indicating the point where the 
bicycle reaches its peak height and begins descending. This 
behavior occurs concurrently with significant changes in both 
steering and forward angles, as the control policy adjusts to 
prepare for landing. The forward velocity remains relatively 
stable, with small fluctuations throughout the episode. 
Notably, the forward velocity decreases slightly during the 
airborne phase, before regaining momentum as the bicycle 
touches down. 

The relation between the angles and velocities highlights 
the intricate balance control achieved by the PPO-based 
control strategy. The bicycle maintains forward velocity 
between 2 to 4 ,/	, with vertical velocity ranging from 32 

to 2 ,/	 , indicating that the control strategy effectively 
manages momentum and velocities to achieve an agile jump. 

 

Fig. 10. Angles and velocities over time. 

These results confirm that the control strategy effectively 
manages both vertical jumps and forward velocities, enabling 
the bicycle to maintain forward velocity while minimizing the 
risk of instability during the aerial phase. The descent and   the 
recovery after the jumping demonstrate the stability of the 
PPO-based control strategy in handling highly dynamic 
jumping motions. 

IV. CONCLUSION 

We make use of a PPO-based reinforcement learning 
approach to control dynamic jumps of the bicycle-rider system 
modeled with a mass-block structure. Simulation results 
demonstrate the method’s ability to manage smooth ground 
motion and complex jumping maneuvers, while also 
highlighting its capacity to adjust key variables such as 
steering angle, forward angle and velocity to maintain stability 
and achieve landings during dynamic jumps. The interaction 
between vertical and forward velocity underscores the 
effectiveness of reinforcement learning strategies in managing 
vertical ascent and descent while ensuring continuous forward 
progress. 

The experiment shows that the PPO-based control strategy 
successfully balances the bicycle during jumping, makes real-
time adjustments to maintain stability, and effectively 
recovers after landing. These findings confirm the potential of 
reinforcement learning in handling complex dynamic tasks 
like bicycle jumping, which require precise control and 
adaptation. 

While the current PPO-based reinforcement learning 
approach has demonstrated effects in controlling dynamic 
jumps in a simplified bicycle-rider system, there are several 
aspects remaining further improvement, particularly when 
addressing more complex terrains and optimizing velocity. 
The following areas are recommended for future 
investigation: 

• Complex Terrain Handling. The current model 
operates in a controlled environment. Future work 
should focus on incorporating more diverse terrains, 
such as uneven surfaces, slopes, and obstacles, to 
enhance the bicycle’s ability to travel in various 
environments more smoothly and efficiently. 

• Optimizing Speed and Direction. To enable faster 
traversal, further refinement is needed in controlling 
both direction and velocity to ensure real-time 
adjustments in acceleration, deceleration, and steering, 
while maintaining stability during jumps. 



• Timing Optimization For Jumps. Optimizing jump 
timing can improve obstacle avoidance and help 
maintain momentum. Enhancing the bicycle’s ability 
to predict and plan jumps in advance will lead to 
smoother and more efficient maneuvers. 

REFERENCES 

[1] Åström, K. J., Klein, R. E., Lennartsson, A. Bicycle dynamics and 
control: adapted bicycles for education and research[J]. IEEE Control 
Systems Magazine, 2005, 25(4): 26-47. 

[2] Meijaard J P, Papadopoulos J M, Ruina A, et al. Linearized dynamics 
equations for the balance and steer of a bicycle: a benchmark and 
review[J]. Proceedings of the Royal society A: mathematical, physical 
and engineering sciences, 2007, 463(2084): 1955-1982.  

[3] Limebeer D J N, Sharp R S. Bicycles, motorcycles, and models[J]. 
IEEE Control Systems Magazine, 2006, 26(5): 34-61. 

[4] Schwab A L, Meijaard J P, Kooijman J D G. Some recent developments 
in bicycle dynamics[C]//Proceedings of the 12th World Congress in 
Mechanism and Machine Science. Moscow, Russia: Russian Academy 
of Sciences, 2007: 1-6. 

[5] Keo L, Yamakita M. Controlling balancer and steering for bicycle 
stabilization[C]//2009 IEEE/RSJ International Conference on 
Intelligent Robots and Systems. IEEE, 2009: 4541-4546. 

[6] Consolini L, Maggiore M. Control of a bicycle using virtual holonomic 
constraints[J]. Automatica, 2013, 49(9): 2831-2839. 

[7] Hess R, Moore J K, Hubbard M. Modeling the manually controlled 
bicycle[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part 
A: Systems and Humans, 2012, 42(3): 545-557. 

[8] Tan J, Gu Y, Liu C K, et al. Learning bicycle stunts[J]. ACM 
Transactions on Graphics (TOG), 2014, 33(4): 1-12. 

[9] Seekhao P, Tungpimolrut K, Parnichkun M. Development and control 
of a bicycle robot based on steering and pendulum balancing[J]. 
Mechatronics, 2020, 69: 102386. 

[10] Persson N, Ekström M C, Ekström M, et al. Trajectory tracking and 
stabilisation of a riderless bicycle[C]//2021 ieee international 
intelligent transportation systems conference (itsc). IEEE, 2021: 1859-
1866. 

[11] He K, Deng Y, Wang G, et al. Learning-based trajectory tracking and 
balance control for bicycle robots with a pendulum: A Gaussian 
process approach[J]. IEEE/ASME Transactions on Mechatronics, 
2022, 27(2): 634-644. 

[12] Sutton R S, Barto A G. Reinforcement learning: An introduction[M]. 
MIT press, 2018. 

[13] Zai A, Brown B. Deep reinforcement learning in action[M]. Manning 
Publications, 2020.  

[14] Randløv J, Alstrøm P. Learning to Drive a Bicycle Using 
Reinforcement Learning and Shaping[C]//ICML. 1998, 98: 463-471. 

[15] Peters J, Schaal S. Reinforcement learning of motor skills with policy 
gradients[J]. Neural networks, 2008, 21(4): 682-697. 

[16] Chung T C. Controlling bicycle using deep deterministic policy 
gradient algorithm[C]//2017 14th international conference on 
ubiquitous robots and ambient intelligence (URAI). IEEE, 2017: 413-
417. 

[17] Lillicrap T P. Continuous control with deep reinforcement learning[J]. 
arXiv preprint arXiv:1509.02971, 2015.  

[18] Zheng Q, Wang D, Chen Z, et al. Continuous reinforcement learning 
based ramp jump control for single-track two-wheeled robots[J]. 
Transactions of the Institute of Measurement and Control, 2022, 44(4): 
892-904. 

[19] Schulman J, Wolski F, Dhariwal P, et al. Proximal policy optimization 
algorithms[J]. arXiv preprint arXiv:1707.06347, 2017.

 


